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Abstract. The performance of the A1-Mg-Sc alloy C557 was evaluated to assess its potential for

a broad range of aerospace applications, including airframe and launch vehicle structures. Of

specific interest were mechanical properties at anticipated service temperatures and thermal

stability of the alloy. Performance was compared with conventional airframe aluminum alloys

and with other emerging aluminum alloys developed for specific service environments.

Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet

in the as-received H 116 condition and after thermal exposures at 107°C. Metallurgical analyses

were performed to define grain morphology and texture, strengthening precipitates, and to assess

the effect of thermal exposure.

Introduction. Wrought, non-heat-treatable aluminum-magnesium alloys are potential

candidates for structural applications because of their low density, good weldability, and

excellent corrosion resistance [1]. The addition of scandium has been shown to increase the

strength while maintaining the ductility of aluminum-magnesium alloys [2, 3]. Additions of

scandium and zirconium to A1-Mg alloys synergystically promote strengthening and result in

higher strengths than either Sc or Zr additions produce alone [4]. In wrought A1-Mg-Sc alloys

with Zr additions, strengthening occurs primarily by development of coherent A13Sc and A13Zr

dispersoids. Additional strengthening is achieved by grain refinement, as the dispersoids inhibit

recrystallization during working [4].

The moderate strength level achieved in A1-Mg-Sc alloys combined with the inherent

corrosion resistance of the A1-Mg system makes these alloys attractive for airframe structural

applications. Sc-bearing dispersoids are inherently thermally stable [5], which enables

consideration for structural applications where extended elevated temperatures are anticipated.

However, in alloys with magnesium levels above about 3.5%, precipitation of the 13phase,

AlsMgs, can occur during thermal exposure and has been shown to be detrimental to corrosion

resistance [5]. Limited data available at cryogenic temperatures [2] suggests that A1-Mg-Sc

alloys are suitable for service down to liquid hydrogen temperatures.

In the current study, the A1-Mg-Sc alloy C557 was evaluated to assess its potential for a

broad range of aerospace applications. Particular emphasis is placed on strength-toughness

behavior at temperatures from -184°C to 107°C to establish service temperature applicability and

after exposures up to 10,000 hours at 107°C to evaluate thermal stability.

Materials

The material evaluated was produced by Alcoa as a 4,500 kg (10,000 lb) commercial scale

ingot. Proprietary thermomechanical processing was used to produce rolled sheets, 1.22 m x

3.66 m, both 1.6 mm and 2.3 mm thick, in the H116 condition. The thermomechanical

processing schedule was tailored to optimize the sheet for superplastic forming and the H 116

heat treatment [1] was chosen to ensure good stress corrosion resistance. The chemistry of the

rolled sheet, provided in Table 1, is very similar to the Russian alloy 1535 [2]. As shown in

Table 1. Chemical Composition of C557 Rolled Sheet (in weight percent).

Sheet Thickness Mg Sc Mn Zr Zn Fe Si
1.6 mm 3.94 0.22 0.62 0.100 0.016 0.099 0.052

2.3 mm 4.02 0.24 0.62 0.096 0.015 0.095 0.062



Fig. 1,theresultingsheetexhibitsverythinpancakeshapedgrains,alignedin therolling
directionanduniformthroughoutthethickness.Mg-bearingparticlesapproximately2gmin size
wereobservedatgrainboundarieswith occasionalFe,Si-bearinginclusions,rangingfrom5to
20gmin size,asshownin Fig.2. Resultsfromorientationdistributionfunction(ODF)texture
analysisweresimilarforbothsheetsandrevealedastrongdeformationtexture,dominatedby
Brassandshearcomponents,andmoderaterecrystallizationtexture.

Fig. 1.Typicalmicrostructureof theC557
sheetsevaluated.

Fig.2.Nomarskiimageof theC557sheet
illustratingparticledistribution.

Procedures

Tensile and fracture toughness properties were determined for material in the H116 condition

and after isothermal exposures at 107°C, for times up to 10,000 hours. Properties were measured

for material in the H116 condition at 25°C, -184°C, and 107°C. Ambient temperature properties

were evaluated after thermal exposure for 1,000, 3,000, and 10,000 hours at 107°C. The material

was isothermally exposed as pieces of sheet from which specimens were machined after

exposure.

Tensile properties were measured using sub-size, full sheet thickness specimens in both the

longitudinal (L) and transverse (T) orientations. All test procedures were in accordance with

ASTM E8-96. For each test, yield strength, ultimate tensile strength, percent elongation to

failure (gage length = 2.54 cm), and elastic modulus were determined.

Trends in fracture toughness with temperature and thermal exposure were evaluated for both

LT and TL orientations using full sheet thickness compact tension (CT) specimens with width,

W = 50.8 mm. Fracture toughness was determined by the single specimen, J-integral method

according to ASTM E1152-87. Physical crack length was determined by the potential drop

method. The crack initiation toughness (Kjici), in accordance with ASTM E813-87, and tearing

modulus (TR) [6] were determined from the crack extension data for each test. The fracture

surfaces of the C(T) specimens were examined in an scanning electron microscope (SEM) to

investigate the fracture mechanisms. Examinations were concentrated at approximately 0.4 mm

and 4 mm of crack growth in order to characterize fracture morphology under conditions of both

plane strain and plane stress, respectively.

Additional fracture toughness tests were performed using middle crack tension, M(T),

specimens to determine apparent fracture toughness, Kapp, for material in the H 116 condition.

M(T) specimens nominally 102 cm wide were tested in the LT orientation and specimens



nominally61cmwideweretestedin bothLT andTL orientations.All M(T) specimenswere
testedatambienttemperaturewithproceduresin accordancewithASTME561-94.Thestress
intensityfactor,K, wascalculatedusingEq.1,

K= (P/BW)[rcasec(rca/W)]1/2 (1)

wherePis load,B is thickness,W is width,andais thehalf cracklength. Thespecimenswere
fatigueprecrackeduntil thecracklengthto widthratio,2aW,wasapproximately0.33.Local
out-of-planebucklingwasrestrictedduringthefracturetestandphysicalcracklengthwas
determinedbyunloadingcomplianceandvisualmeasurement. Kapp was calculated using Eq. 1

based on maximum load (P=Pmax) and the initial crack length in the fracture test.

Results and Discussion

Effect of temperature. Variations in properties with test temperature for material in the H116

condition were similar for both gages of sheet. Tensile results shown in Fig. 3 were consistent

with data reported for A1-Mg-Sc alloys [2-4]. Compared with ambient temperature, tensile

strengths increased by at least 20% at -184°C and were reduced by approximately 10% at 107°C.

Elongation was greater at both 107°C and -184°C, with values approximately 50% higher for the

transverse orientation and nearly doubled for the longitudinal orientation. Tensile strength

anisotropy was low, with values for L and T orientations within 5% at all temperatures.

Variations in ductility were greater, with differences between L and T orientations exceeding

25% at ambient temperature.
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Fig. 3. Effect of test temperature on the tensile properties of C557 sheet in the H116 condition.

Both sheet gages exhibited continuously rising R-curves, shown in Fig. 4, for all

temperatures and orientations tested. Higher toughness was achieved at elevated temperature, as

evidenced by the overall higher R-curves, but toughness appeared comparable for ambient and

cryogenic temperatures. Analysis of the R-curves indicated that initiation toughness, KjIci, varied

inversely and tearing modulus, TR, varied directly with temperature over the range from -184°C

to 107°C, as shown in Fig. 5, with the greatest thermal effect occurring between ambient and

elevated temperatures.
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Fig. 4. Variation in Kjici and TR of C557 sheet with test temperature.
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Fig. 5. Variation in KjIci and TR of C557 sheet with test temperature.

SEM examination indicated that the fracture mode was primarily transgranular microvoid

coalescence (TGMVC) at ambient temperature. The example shown in Fig. 6 was typical for

both plane strain and plane stress fracture. Void initiating particles ranged in size from 1-10 btm,

resulting in a bimodal distribution of ductile dimples linked by apparent void sheets. The

fracture mode at elevated temperature was also TGMVC, however, fracture under plane strain

conditions exhibited large, shallow, equiaxed dimples, and an absence of apparent void sheets,

which may indicate that the lower initiation toughness reflects primarily the reduced tensile

strength at 107°C. Delaminations, linked by regions of TGMVC, were observed at cryogenic

temperature, as shown in Fig. 7. The delaminations, which occur perpendicular to the primary

crack plane and parallel to the crack growth direction, begin within 200btm of the fatigue

precrack and may explain the enhanced initiation toughness observed. Studies of delamination



tougheningin A1-Lialloysindicatethatthetoughnessincreaseoccursdueto reductionof
through-thicknessconstraintatthecracktip associatedwith theformationof additionalfree
surfaces[7,8].

Fig6. TGMVCtypicalforplanestressand
planestrainfractureatambienttemperature.

Fig.7.Delaminationsobservedin theregion
of stablecrackextensionat-184°C.

Effectof thermal exposure. The trends in ambient temperature properties with exposure at

107°C were similar for both sheet gages. Tensile results shown in Fig. 8 indicate that ultimate

and yield strengths were reduced by about 5% and 10%, respectively, after 10,000 hours

exposure at 107°C. Reductions in elongation after thermal exposure are approximately 20% for

the longitudinal orientation and over 35% for the transverse orientation, with most of the
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Fig. 8. Variation in tensile properties of C557 sheet with thermal exposure.

reduction occurring by 3,000 hours. Anisotropy in tensile strengths was very low, with values

for L and T orientations within 3% for all exposure times. Ductility anisotropy was significantly

reduced with thermal exposure. Braun [5] demonstrated that although tensile properties of a

similar A1-Mg-Sc alloy remained stable with thermal exposure, corrosion resistance deteriorated

due to 13phase precipitation at grain boundaries.



TheR-curvesresultingfrom ambienttemperaturetestsafterthermalexposure,shownin
Fig.9, suggestthattoughnessremainsrelativelystable.However,trendsin initiationtoughness
andtearingmoduluswith thermalexposure,shownin Fig.10,reflectreductionin toughnessafter
1,000and3,000hoursexposure,with recoveryto pre-exposurelevelsby 10,000hours.
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80

60

40

2O

0

KjIci TR ] 2.3 mm sheet
IL--,- -a- /

70

6O

5O

40
-30

30

-20 20

10 10

0 0

1.6 mm sheet

0 2500 5000 7500 10000 0 2500 5000 7500 10000

Exposure time at 107°C, hours Exposure time at 107°C, hours

3O

20

10

0

Fig. 10. Variation in KjIci and TR ofC557 sheet with exposure time at 107°C.

SEM fractography indicated that the fracture morphology was similar for all exposure times.

Fracture occurred by TGMVC, as shown in Fig. 11. The fraction of large dimples was greater

and of apparent void sheets less than observed for unexposed materials, particularly in the plane

strain fracture region. Transmission electron microscopy (TEM) analysis of material exposed for

10,000 hours at 107°C revealed grain boundary precipitation of the 13phase, A18Mgs. Based on

the similarity of fracture surfaces for all thermal exposure conditions, it is likely that precipitation

had occurred by 1,000 hours. For specimens exposed for 3,000 and 10,000 hours, delaminations

were noted in the fatigue precrack region, as shown in Fig. 12. The transition from the precrack



to stablecrackextensionis markedbylargeplasticdeformationzonesattheendof each
delamination.Theresultingcracktip bluntingeffectmayexplainthehigherinitiationtoughness
valuescomparedwithmaterialexposedfor 1,000hours.Thedelaminationsoccurover35%and
60%of thesheetthicknessfor 3,000and10,000hourexposuretimes,respectively,whichcould
explaintheenhancedeffectontoughnessfor longerexposuretimes.
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(a)planestrainregion (b)planestressregion

Fig.11.TypicalTGMVCmorphologyafterthermalexposureat 107°C.

100gm

Fig.12.Delaminationsinprecrackregionafterthermalexposureat 107°C.

Kapp Fracture Toughness Assessment. Airframe manufacturers have traditionally relied on

Kapp for assessing the fracture toughness of large sheet structures. Kapp and tensile yield strength

results are provided in Table 2 for C557 compared with values for aerospace alloys evaluated

during other in-house research programs. C557 exhibited strength and toughness values

comparable to 2024-T3 based on the 61 cm panels, but exhibited about 12% lower Kapp in the

102 cm panels. Overall, the strength-toughness combination for C557 was lower than for A1-Cu-

Mg-Ag alloy, C415, and A1-Li alloy, ML377, which were developed in the High Speed Research

program for elevated temperature aircraft service [9]. The toughness level for C557 compared

well with 7050 and 7475, but strengths were lower.



Table 2. Fracture toughness results from 61 and 102 cm wide M(T) panels.

Alloy/ Width, Thickness, Orientation YS, MPa Kapp,
Condition cm mm MPa-m 1/2

C557-H116 102 2.3 L, LT 320.4 126.2

C557-H116 102 1.6 L, LT 328.7 124.0

2024-T3 102 1.6 L, LT 310.1 142.7

7475-T7 102 1.6 L, LT 458.9 117.2

C557-H116 61 1.6 L, LT 328.7 104.7

C557-H116 61 1.6 T, TL 328.0 115.5

C557-H116 61 2.3 L, LT 320.4 108.6

C557-H116 61 2.3 T, TL 319.0 118.0

2024-T3 61 1.6 L, LT 310.1 116.5

C415-T8 56 2.3 L, LT 503.0 124.1

ML377-T8 56 2.3 L, LT 526.4 120.3

7050-T73 56 2.3 L, LT 468.5 111.1

Conclusions

Measured mechanical properties for the A1-Mg-Sc alloy C557 and trends with both test

temperature and thermal exposure were similar for both 1.6 and 2.3 mm gage sheet. While

strength and toughness both increased at cryogenic temperature, suggesting that C557 is viable

for low temperature service, delaminations occured during fracture at -184 °C and must be better

understood prior to structural applicaton. Thermal stability in tensile properties was

demonstrated by less than 5% variation in ambient temperature tensile strengths with exposure at

107°C. Fracture toughness decreased with thermal exposure and was primarily due to [3phase

precipitation at grain boundaries. Improvement in fracture toughness with extended thermal

exposure was associated with the occurrence of large plastic deformation zones at fatigue

precrack delaminations prior to the onset of stable cracking. Yield strength and apparent fracture

toughness values of C557 were within 10% of established values for 2024-T3 sheet, but strength

and toughness were somewhat lower than that of alloys developed specifically for elevated

temperature service.
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